skip to main content


Search for: All records

Creators/Authors contains: "Song, Qianqian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Drug resistance poses a significant challenge in cancer treatment. Despite the initial effectiveness of therapies such as chemotherapy, targeted therapy and immunotherapy, many patients eventually develop resistance. To gain deep insights into the underlying mechanisms, single-cell profiling has been performed to interrogate drug resistance at cell level. Herein, we have built the DRMref database (https://ccsm.uth.edu/DRMref/) to provide comprehensive characterization of drug resistance using single-cell data from drug treatment settings. The current version of DRMref includes 42 single-cell datasets from 30 studies, covering 382 samples, 13 major cancer types, 26 cancer subtypes, 35 treatment regimens and 42 drugs. All datasets in DRMref are browsable and searchable, with detailed annotations provided. Meanwhile, DRMref includes analyses of cellular composition, intratumoral heterogeneity, epithelial–mesenchymal transition, cell–cell interaction and differentially expressed genes in resistant cells. Notably, DRMref investigates the drug resistance mechanisms (e.g. Aberration of Drug’s Therapeutic Target, Drug Inactivation by Structure Modification, etc.) in resistant cells. Additional enrichment analysis of hallmark/KEGG (Kyoto Encyclopedia of Genes and Genomes)/GO (Gene Ontology) pathways, as well as the identification of microRNA, motif and transcription factors involved in resistant cells, is provided in DRMref for user’s exploration. Overall, DRMref serves as a unique single-cell-based resource for studying drug resistance, drug combination therapy and discovering novel drug targets.

     
    more » « less
  2. Abstract. In this study, we developed a novel algorithm based on the collocatedModerate Resolution Imaging Spectroradiometer (MODIS) thermal infrared (TIR)observations and dust vertical profiles from the Cloud–Aerosol Lidar withOrthogonal Polarization (CALIOP) to simultaneously retrieve dust aerosoloptical depth at 10 µm (DAOD10 µm) and the coarse-mode dusteffective diameter (Deff) over global oceans. The accuracy of theDeff retrieval is assessed by comparing the dust lognormal volumeparticle size distribution (PSD) corresponding to retrieved Deff withthe in situ-measured dust PSDs from the AERosol Properties – Dust(AER-D), Saharan Mineral Dust Experiment (SAMUM-2), and Saharan Aerosol Long-Range Transport and Aerosol–Cloud-InteractionExperiment (SALTRACE) fieldcampaigns through case studies. The new DAOD10 µm retrievals wereevaluated first through comparisons with the collocated DAOD10.6 µmretrieved from the combined Imaging Infrared Radiometer (IIR) and CALIOPobservations from our previous study (Zheng et al., 2022). The pixel-to-pixelcomparison of the two DAOD retrievals indicates a good agreement(R∼0.7) and a significant reduction in (∼50 %) retrieval uncertainties largely thanks to the better constraint ondust size. In a climatological comparison, the seasonal and regional(2∘×5∘) mean DAOD10 µm retrievals basedon our combined MODIS and CALIOP method are in good agreement with the twoindependent Infrared Atmospheric Sounding Interferometer (IASI) productsover three dust transport regions (i.e., North Atlantic (NA; R=0.9),Indian Ocean (IO; R=0.8) and North Pacific (NP; R=0.7)). Using the new retrievals from 2013 to 2017, we performed a climatologicalanalysis of coarse-mode dust Deff over global oceans. We found thatdust Deff over IO and NP is up to 20 % smaller than that over NA.Over NA in summer, we found a ∼50 % reduction in the numberof retrievals with Deff>5 µm from 15 to35∘ W and a stable trend of Deff average at 4.4 µm from35∘ W throughout the Caribbean Sea (90∘ W). Over NP inspring, only ∼5 % of retrieved pixels with Deff>5 µm are found from 150 to 180∘ E, whilethe mean Deff remains stable at 4.0 µm throughout eastern NP. To the best of our knowledge, this study is the first to retrieve both DAOD andcoarse-mode dust particle size over global oceans for multiple years. Thisretrieval dataset provides insightful information for evaluating dustlongwave radiative effects and coarse-mode dust particle size in models.

     
    more » « less
  3. null (Ed.)
    Abstract. In the current global climate models (GCMs), the nonlinearity effect ofsubgrid cloud variations on the parameterization of warm-rain process, e.g.,the autoconversion rate, is often treated by multiplying the resolved-scalewarm-rain process rates by a so-called enhancement factor (EF). In thisstudy, we investigate the subgrid-scale horizontal variations andcovariation of cloud water content (qc) and cloud droplet numberconcentration (Nc) in marine boundary layer (MBL) clouds based on thein situ measurements from a recent field campaign and study the implicationsfor the autoconversion rate EF in GCMs. Based on a few carefully selectedcases from the field campaign, we found that in contrast to the enhancingeffect of qc and Nc variations that tends to make EF > 1, the strong positive correlation between qc and Nc results in asuppressing effect that tends to make EF < 1. This effect isespecially strong at cloud top, where the qc and Nc correlation canbe as high as 0.95. We also found that the physically complete EF thataccounts for the covariation of qc and Nc is significantly smallerthan its counterpart that accounts only for the subgrid variation ofqc, especially at cloud top. Although this study is based on limitedcases, it suggests that the subgrid variations of Nc and itscorrelation with qc both need to be considered for an accuratesimulation of the autoconversion process in GCMs. 
    more » « less
  4. Mineral dust, defined as aerosol originating from the soil, can have various harmful effects to the environment and human health. The detection of dust, and particularly incoming dust storms, may help prevent some of these negative impacts. In this paper, using satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation Observation (CALIPSO), we compared several machine learning algorithms to traditional physical models and evaluated their performance regarding mineral dust detection. Based on the comparison results, we proposed a hybrid algorithm to integrate physical model with the data mining model, which achieved the best accuracy result among all the methods. Further, we identified the ranking of different channels of MODIS data based on the importance of the band wavelengths in dust detection. Our model also showed the quantitative relationships between the dust and the different band wavelengths. 
    more » « less